Quantcast
Viewing all articles
Browse latest Browse all 3

Answer by Stelios for Finding minimum and maximum of implicit functions

You can find the stationary points of $z=z(x)$ by application of the implicit function theorem (to find the derivative of $z$) and solving (numerically) a system of two equations:

stationarypts =   {x, z} /.     NSolve[{2 Ωxz - C0 == 0, -D[2 Ωxz - C0,x]/D[2 Ωxz - C0, z] == 0}, {x, z}]
 {{-1.0898108637505286, 0. + 0.4183859620455661*I},  {-1.0898108637505286, 0. - 0.4183859620455661*I},  {1.1719884857449565, 0. + 0.07308908417888743*I},  {1.1719884857449565, 0. - 0.07308908417888743*I},  {0.9892920541322313, -0.0984137896912804}, {-0.01369302911651984,   0.6235986400369145}, {-0.01369302911651984, -0.6235986400369145},  {0.9892920541322313, 0.0984137896912804}, {0.8365517541212919,   0. + 0.011277418446297614*I}, {0.8365517541212919, 0. - 0.011277418446297614*I}}

For the range of values of $x$ you are interest in, there are two stationary points:

Cases[stationarypts, x_ /; xL1 <= x[[1]] <= xL2]

{{0.989292, -0.0984138}, {0.989292, 0.0984138}}

ContourPlot[2 Ωxz - C0 == 0, {x, xL1, xL2}, {z, -0.2, 0.2},   Epilog ->     {PointSize[Large], Point[Cases[stationarypts, x_ /; xL1 <= x[[1]] <= xL2]]}]

Image may be NSFW.
Clik here to view.
enter image description here


Viewing all articles
Browse latest Browse all 3

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>